
Automatic Genre-Dependent Composition using Answer Set Programming

Sarah Opolka and Philipp Obermeier and Torsten Schaub
University of Potsdam

Potsdam, Germany

Abstract

Harmonic music composition adheres to declarative rules and
has, hence, become more and more subject to automation
techniques. Specifically, Answer Set Programming (ASP), a
declarative framework for problem solving, has been success-
fully used in recent attempts to compose music based on either
a certain genre or a composing technique. However, the com-
position based on the combination of both has not been sup-
ported so far. This paper introduces chasp, an approach that
considers the problem of automatic music composition from
a more general perspective. More specifically, chasp creates
simple accompanying pieces of different genres. To accom-
plish this ASP is used to solve the problem of chord progres-
sions, based on the rules proposed by the theory of harmony.
This results into a harmonic sequence that eventually provides
the basis for the creation of simple musical pieces by apply-
ing genre-specific templates, through an additional imperative
control framework.

Keywords
Automatic Composition, Answer Set Programming, Har-
mony theory, Logic Programming, Declarative Rule Lan-
guages

Introduction
Music creation and consumption generally involves emo-
tions. As computers are commonly considered unable to re-
produce or express human feelings, one could easily assume
that it might be nearly impossible for a computer to create
‘good’ music. Conversely, there are many rules regarding
music. Some rules regulate the way harmonies are supposed
to follow one another, other rules describe the way certain
composition techniques are executed (e.g. counterpoint1 or
twelve-tone technique2). There even exist rules for the ex-
pression of emotions through music3. This leads to the basic
idea of using those rules to automatically compose musical
pieces with a computer, which afterwards may be altered by
a human to fit his needs.

Composing is mainly known as a pen and paper activ-
ity. Nonetheless, people nowadays increasingly tend to use

1http://en.wikipedia.org/wiki/Counterpoint
2http://en.wikipedia.org/wiki/Twelve-tone_technique
3http://en.wikipedia.org/wiki/Doctrine_of_the_affections

the help of computer software which ranges from simple
scorewriters like Sibelius and sequencers via music produc-
tion software (e.g. MAGIX music maker4) and music work-
stations through to music creation games on the internet5.

In-between these mostly auxiliary programs many differ-
ent approaches to completely automated composition have
been made and refined. (Ames 1987) and (Opolka 2012)
give a detailed summary of those. Hence, only some of the
most important achievements will be briefly mentioned here.
One of the first known approaches to automatic composi-
tion is Mozart’s "Musikalisches Würfelspiel" (Musical Dice
Game)(Mozart 1793) where the player randomly chooses dif-
ferent snippets of music out of a given chart and plays these
in a certain order, which always produces a new musical
piece. Since the 1950s numerous kinds of approaches to the
problem of automatic music composition emerged including
Computer Aided Composition (CAC), automatic composition
without any human interference, and specific new artificial
languages developed for the purpose of human music compo-
sition and the application of Artificial Intelligence. In 1965,
a first composition using CAC was produced by Martin Klein
and Douglas Bolitho using random numbers (Ames 1987).
Iannis Xenakis developed stochastic music (Xenakis 1971;
Myhill 1978) and Gottfried Michael Koenig used statistics
to create musical pieces (Koenig 1978; 1971). Among au-
tomatic composition there are well known works such as
the Illiac Suite (Hiller 1959) or the approach on the harmo-
nization of chorals in the style of Bach by Kemal Ebcioglu
(Ebcioglu 1986; 1990). The former applied different sets of
rules and Markov Chains on a given starting situation while
the latter used rules of the counter point technique. Ebcioglu
initially used Prolog for his approach but later he developed
an own language for the problem, because Prolog was not
meeting his expectations. Other languages especially devel-
oped for the purpose of composing and producing music as
final output are SuperCollider by James McCartney (McCart-
ney 1996) and ChucK by Wang and Cook (Wang and Cook
2003). A younger approach from François Pachet (Pachet
2002) utilizes Artificial Intelligence, i.e. Machine Learning.
His program, Continuator, analyzes musical pieces and ap-

4http://www.magix.com/gb/music-maker/
5http://www.musicgames.com/games-by-category/compose-

music-games/

plies the patterns learned in the process to create new compo-
sitions in a similar style.

chasp (Composing Harmonies with ASP), the approach in-
troduced here, uses Answer Set Programming (ASP; (Baral
2003; Brewka et al. 2011)), a declarative reasoning frame-
work, to produce accompanying pieces based on harmony
theory and genre-specific characteristics. There already ex-
ist two similar projects using ASP, one of these being An-
ton, capable of creating musical compositions based on the
rules of counter point (Boenn et al. 2010), the other being
Armin, which is based on Anton and produces musical pieces
that follow the characteristics of the trance genre (Pérez and
Ramírez 2011). Although ASP is a relatively young logic
programming paradigm which has not been developed for the
sole purpose of composing music, it has been shown to be
adequate for "teaching" the computer facts and rules about it.
Both approaches mentioned earlier use rules specific to either
one musical genre or composing technique and are thus only
able to create music of this one small domain. Furthermore,
the programs strongly depend on creating a melody and using
it for the composition of the final piece. As opposed to this,
chasp is able to autonomously create musical pieces of many
different genres and doesn’t even consider a melody (yet),
but instead focuses on the harmonic basis of a piece. Initially,
chasp uses ASP based on a knowledge base representing rules
concerning music theory, especially harmony theory, to cre-
ate a chord progression in a certain length and key which may
be indicated by the user. Later, rhythm and a distinct guide-
line to use the notes of a given harmony are applied through a
Python framework to produce different genres from one and
the same harmonic basis. The decision to use ASP in this con-
text is also motivated by its declarative nature that allows to
compactly describe the problem rather than the solution. This
way musical rules can easily be added or changed while at the
same time it is unnecessary to consider how to execute them,
as one inevitably would have to do when using an imperative
approach. That is, we only use an imperative Python-based
framework to transform the resulting chord progression pro-
duced by ASP into an adequate output format, i.e., as sheet
music for piano in PDF and MIDI format. Altogether, chasp
autonomously creates a musical piece based on rules concern-
ing harmony theory and specific genres, where the user can
optionally customize length, key and genre of the piece to his
desire.

Initially, this paper considers the music theory behind
chasp followed by a short introduction to ASP. Then, chasp
is introduced in detail by first describing the process of creat-
ing chord progressions and afterwards explaining how genre
specific rules are applied to these to create a musical piece.
Subsequently, the paper discusses an important aspect for op-
timization and concludes by mentioning possible future work.

Music Theory
Music is a vast field with many different sets of known rules
specific to a certain time (e.g. Baroque or modern age), an
area (e.g. eastern or western) or a genre (e.g. Jazz or Metal).
The approach proposed here is using western music theory
based on rules from the early 19. century to the late 20th cen-
tury, with a strong influence from Arnold Schönberg’s "Har-

monielehre" (Schönberg 1966). The general rules used by
chasp are:

1. Two consecutive chords have to share at least one note but
may never be the two same chords.

2. Disharmonies have to be prepared, i.e. the preceding chord
has to contain the according disharmonic note.

3. Each cadenza begins with a tonic and ends with a
dominant-tonic sequence.

The harmonic theory describes the structure of harmonies
and rules for their utilization when composing with the main
interest being the handling of chord progressions. There are
many different types of harmonies, starting with a simple
triad to which one can add one or more notes to create a chord
of four or more notes. For all of these chords there exist rules
defining which notes exactly form a chord as well as terms
describing a specific chord’s structure (e.g. Cmaj7 or IV 6).

chasp only uses two types of chords which still results in
vast possibilities for different pieces of music. First, all triads
from major and minor scales are being used as well as the
seventh chord, where a minor seventh is added to a triad. This
repertoire of chords is mostly known from folk or pop music.
Still, under the consideration of rhythm and specific ways to
utilize a chord’s notes different genres can be created. This
process will be explained in detail further below. For a more
detailed explanations of the rules mentioned above as well as
the resulting consequences for chord progressions you may
refer to (Opolka 2012).

Answer Set Programming
ASP is a declarative framework for problem solving, origi-
nally designed for the Knowledge Representation and Rea-
soning domain. It is based on a simple yet expressive rule
language that allows users to model problems as compact,
purely declarative logic programs. The computational search
for solutions, called answer sets, is handled by powerful high-
performance ASP solvers (Gebser et al. 2007; Leone et al.
2006), whose internal design and optimization profit from
the strict separation of problem description and control in the
ASP workflow. Overall, ASP is a modern, proven approach
to model and solve combinatorial search problems, ranging
from P up to Σ2

p-completeness, in a steadily growing num-
ber of domains e.g. Automated Planning, Robotics, Model
Checking, Systems Biology, etc.

Subsequently, we only provide a brief introduction to the
syntax and semantics of logic programs with cardinality rules
and integrity constraints, and refer the reader to (Simons,
Niemelä, and Soininen 2002) for further details. A (normal)
rule r is an expression of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an (1)

where ai, for 0 ≤ m ≤ n, is an atom of the form
p(t1, . . . , tk) with predicate symbol p, and t1, . . . , tk are
terms, viz. constants, variables, or functions. Letting
head(r) = a0, body(r)

+
= {a1, . . . , am}, and body(r)

−
=

{am+1, . . . , an}, we also denote r by head(r)← body(r)
+∪

{∼a | a ∈ body(r)
−}. A (normal) logic program R is a set

of rules of the form (1). The Herbrand universe of R consists
of all variable-free terms constructible from constants (by de-
fault including all integers) and function symbols occurring
in R. A ground instances of an atom a (a rule r, resp.) oc-
curring in R is obtained by substituting all variable in a (in r,
resp.) with some element of the Herbrand universe of R. The
ground instance (or grounding) of R, denoted by grd(R), is
the set of all ground rules constructible from rules r ∈ R. A
set X of ground atoms satisfies a ground rule r of the form (1)
if body(r)

+ ⊆ X and body(r)
− ∩X = ∅ imply that a0 ∈ X .

We call X a model of R if X satisfies every rule r ∈ grd(R);
X is an answer set of R if X is a subset-minimal model of
{head(r)← body(r)

+ | r ∈ grd(R), body(r)
− ∩X = ∅}.

In addition, logic programs can be extended by shorthand
expressions to succinctly describe certain aspects. Specifi-
cally, in the subsequent section we will make use of cardinal-
ity rules and integrity constraints. These are expressions of
the form

h← a1, . . . , am,∼am+1, . . . ,∼an (2)

where ai, for 1 ≤ m ≤ n, is an atom of the form p(t1, . . . , tk)
with predicate symbol p, and t1, . . . , tk are terms, viz. con-
stants, variables, or functions; the head h is either a cardinal-
ity constraint of the form l {h1, . . . , hk}u in which l, u are
integers and h1, . . . , hk are atoms, or the special symbol ⊥.
We call an expression of the form (2) cardinality rule6 if h is
a cardinality constraint, and an integrity constraint if h = ⊥.
A set X of ground atoms satisfies a ground cardinality rule
if {a1, . . . , am} ⊆ X and {am+1, . . . , an} ∩ X = ∅ imply
that h = l {h1, . . . , hk}u and l ≤ |{h1, . . . , hk} ∩X| ≤ u;
and a ground integrity constraint if {a1, . . . , am} 6⊆ X or
{am+1, . . . , an} ∩ X 6= ∅. Intuitively, a ground cardinality
constraint in a rule’s head assures that it is only satisfied by
a set of ground atoms X if X does not satisfy its body7, or
otherwise X must contain at least l and at most u atoms of
{h1, . . . , hk}. Furthermore, a ground integrity constraint as-
sures that it is only satisfied by a set of ground atoms X if X
does not satisfy its body. Technically, both cardinality rules
and integrity constraints can be implemented as a set of nor-
mal rules, to which they are typically rewritten for uniform
evaluation. Hence, the set of stable models for a logic pro-
gram containing those short-hand statements is identical to
the one of the normal logic program retrieved by this transla-
tion.

In the following we present our ASP programs in the
technical input syntax of ASP grounder gringo, version
4.4 (Calimeri et al. 2012; Potassco 2014). We also as-
sume familiarity with built-in arithmetical comparison pred-
icates and functions typical for ASP grounders, i.e., {‘=’,
‘!=’,‘<’,‘<=’,‘>=’,‘>’} and {‘+’, ‘-’, ‘*’, ‘/’}, which are
evaluated upon instantiation.

6For simplicity, we here limit the definition to cardinality con-
straints occurring in heads of rules. In practice, cardinality as well
as weight constraints can occur likewise in rule heads and bodies.

7That is, it does not hold that both {a1, . . . , am} ⊆ X and
{am+1, . . . , an} ∩X = ∅

chasp
chasp8 uses ASP to create chord progressions based on the
rules of harmony theory and Python as imperative control to
produce simple musical pieces of different genres.

Chord Progression

1 note(c;cis;des;d;dis;es;e;f;fis;ges;
2 g;gis;as;a;ais;b;bes).
3 next(c, (cis; des)).

5 halftones(T1,T3,H+1) :-
6 note(T1); note(T2); note(T3);
7 halftones(T1,T2,H); next(T2,T3);
8 H < 12.

10 halftone_steps(maj,1,2,2).
11 key(A,K,M,S+1,T2) :-
12 key(A,K,M); key(A,K,M,S,T1);
13 halftones(T1,T2,H);
14 halftone_steps(M,S,S+1,H);
15 note_acc(A,K); note_acc(A,T1);
16 note_acc(A,T2); S < 7; H > 0.

18 triad(maj,4,3,3).
19 chord(R,T1,T2,R,maj,0) :-
20 key(A,R,maj);
21 halftones(R,T1,H1);
22 halftones(T1,T2,H2);
23 note_acc(A, (R;T1;T2));
24 triad(maj,H1,H2,_).

26 chord_inv(R,T1,T2,R,R,CM,6) :-
27 chord(R,T1,T2,_,CM,0).

Listing 1: Describing the musical domain

A computer has no knowledge of music. To be able to
create a chord progression one first has to teach it basic mu-
sical concepts like notes, scales and chords. Only then one
can describe a chord progression and rules for its creation.
Listing 1 shows an excerpt of the principal rules describ-
ing the basic musical knowledge. The concept of notes is
represented in lines 1 to 8. There are 12 different notes in
sound and 17 in name as described by note/19 in lines 1
and 2. For each note the succeeding note is determined by
next(T1,T2), with T1 being the first and T2 the succeed-
ing note, as shown in line 3. Between each two notes T1
and T2 there exists an interval of semitone steps H as de-
scribed by halftones(T1,T2,H) in lines 5 to 8. Lines 10
to 16 represent the rules for scales. The intervals between
any two out of seven consecutive notes produce a scale. As
an example, line 10 shows halftone_steps(maj,1,2,2)
describing the first two notes of a major scale. This can be
generalized as halftone_steps(M,T1,T2,H), with M be-
ing the mode (e.g. major), T1 and T2 two consecutive notes
and H the amount of semitone steps between these two notes.
The rule in lines 11 to 16 generates the actual notes of each

8Source code and technical documentation are available at
http://potassco.sourceforge.net/labs.html

9note/1 is a predicate containing one argument.

scale step. key(A,K,M,S,T) distinctly describes each note
of a scale, with T being the actual note (e.g. e) on scale
step S (e.g. 5) in key K and mode M (e.g. A Major) with A
as the nature of its accidentals (e.g. sharps). Similar rules
describe the structure of a chord in lines 18 to 24. In line
18 triad(maj,4,3,3) gives the intervals between all four
notes of a seventh chord in a major key. Generalized, each
triad/4 describes the intervals between the notes of a spe-
cific chord. while chord(R,T1,T2,R,maj,0) in lines 19
to 24 generates the actual notes R, T1 and T2 of a chord with
root R and mode M in no inversion. A chord’s inversion is
indicated by the last argument of chord/6 which contains
a number that is based on a notation known from the figured
bass where 0 equals no inversion, 6 the first and 46 the second
inversion. chord_inv/7 in lines 26 and 27 gives an example
for a rule generating a chord’s first inversion.

1 next_step(scale_step_inversion(1,0),
2 scale_step_inversion(3,0)).

4 1{cadenza(N+1,T2) : next_step(T1,T2)}1 :-
5 cadenza(N,T1); cadenza_step(N+2).

7 cadenza_chord(N+1,R,CM,I) :-
8 cadenza(N+1,(S,I2));
9 cadenza_chord(N,_,_,_);

10 chord(R,T1,T2,T3,CM,I);
11 cadenza_step(N+1);
12 thiskey(K,M); key(_,K,M,S,R);
13 key(_,K,M,_,T1); key(_,K,M,_,T2);
14 key(_,K,M,_,T3); indicator(I,I2).

16 cadenza_notes(S,R,T1,T2,T3) :-
17 cadenza_chord(S,R,M1,I);
18 chord(R,T1,T2,T3,M1,I);
19 thiskey(K,M); key(_,K,M).

Listing 2: Creation of a cadenza

With this knowledge base one can describe the desired so-
lution, i.e. the chord progression. The essential part are
the rules describing chord progressions themselves by de-
termining which chords may follow one another and which
may not. For each chord this is represented by rules
like the one shown in lines 1 and 2 of Listing 2. Each
next_step/2 describes a valid chord progression. The car-
dinality rule defining cadenza/2 in lines 4 and 5 generates a
chord progression by choosing exactly one succeeding chord
from all eligible next_step/2. A chord is represented as
scale_step_inversion(S,I) with S being the scale step
over which the chord is established and I being its inver-
sion. Again, the notation is based on the figured bass. The
representation used here implies, that the lowest note of a
chord in a given inversion is the note of the scale step over
which the chord is being build, e.g. in the key C Major
scale_step_inversion(6,6) represents a chord with the
lowest note a in its first inversion10, which applies to F Ma-
jor. As chords are normally represented in the latter notation,
lines 7 to 14 translate cadenza/2 into that form, which is de-

10The lowest note in the first inversion is the third of a basic triad.

�
1

�

�

�
3

7

�

�
� �

1

�

�
5

�� �

5

�

1

� � �
�

5

��
1
3

�

�

Figure 1: Sample for an accompaniment in the style of a
tango

scribed by cadenza_chord/4. For further use of the chord
progression (shown in the next section) a third representa-
tion containing the actual notes of each chord is provided by
cadenza_notes/5 in lines 16 to 19.

The solution output from ASP contains cadenza/2,
cadenza_chord/4 and cadenza_notes/5 atoms.
cadenza/2 contains a lot of information compressed into
an abstract notation based on numbers. This notation is
not exactly human-readable but instead designed for ASP
to be able to compute a valid next chord through mostly
arithmetic calculations. To provide a faster and easier under-
standing of a created cadenza, the additional representation
cadenza_chord/4 is generated and integrated into either
the raw ASP output when debugging or the final sheet
music to give an overview of the harmonic structure of each
created chord progression. As our Python framework does
not contain any background knowledge about music theory
and, thus, cannot directly deduce a chord’s notes from its
chord representation, these are provided by ASP through
cadenza_notes/5. The process of sheet music creation
through the Python framework will be explained in the
following section.

Musical Piece Creation
Based on (Frank 1996), (Frank 1997) and (Kroepel 1977)
general characteristics of different genres have been extracted
to create lilypond templates. Using Python these are ap-
plied to the chord progression given by ASP to create mu-
sical pieces. This process will now be explained by means of
an example.

(Frank 1996) proposes the two measures given in Figure
1 as a sample for an accompanying pattern in the style of a
tango. A lilypond template describing these rules would con-
tain the exact same rhythm and notes at the corresponding
times. These notes would not be absolute but rather be de-
scribed by a number which represents the scale step of each
note in the key of the chord per measure. Translating these
rules to a lilypond notation with numbers instead of explicit
notes results in the following template for the right hand’s
first measure:

r4 r8 5,(<1 3>4\staccato) r4

This template can now be applied to the notes generated by
ASP to create a complete and valid lilypond file. A cadenza
generated by ASP contains information on the notes played
at one time step in cadenza_notes(T,R,N1,N2,N3) as
shown in Listing 2 with T being time or step of the chord in

the cadenza, R the root of the chord, N1 the third, N2 the fifth
and N3 depending on the nature of the chord either the sev-
enth or the root again. Considering one time step equals one
measure the resulting tango piece consists of as many mea-
sures as the given cadenza contains chords. As an example,
when generating a four chord cadenza in e-minor ASP may
give the following output:

thiskey(e,min),
cadenza(1,(1,0)), cadenza(2,(4,7)),
cadenza(3,(5,7)), cadenza(4,(1,0)),
cadenza_chord(1,e,min,0),
cadenza_chord(2,a,min,7),
cadenza_chord(3,b,min,7),
cadenza_chord(4,e,min,0),
cadenza_notes(1,e,g,b,e),
cadenza_notes(2,a,c,e,g),
cadenza_notes(3,b,d,fis,a),
cadenza_notes(4,e,g,b,e)

thiskey/2 contains the key in which the cadenza was cre-
ated. The details of cadenza/2, cadenza_chord/4 and
cadenza_notes/5 were introduced in the previous section.
This output is passed to Python and used to create the actual
sheet music by filling out a lilypond template and thus creat-
ing a complete lilypond file. With the actual notes of the first
measure as in cadenza_notes(1,e,g,b,e), a complete
lilypond notation for the right hand’s first measure would thus
become:

r4 r8 b,(<e g>4\staccato) r4

Eventually, we create a complete lilypond file by applying
the lilypond template to the output given by ASP resulting in
sheet music as shown in Figure 2.

��
�
� �

�

�
��

�
�
��

�

�
�
��

�
��

�
��

�
����

�
�

�
�

��

��
��� �
��	� �

� �
���
�
�

�
� �

�
�
�

Figure 2: Final sheet music output created with lilypond

Optimization
The implementation shown so far has one weak point: with
our current ASP program it takes unreasonably long to find
solutions for cadenzas with a length of more than five chords.
The cause for this is a relatively large grounding of the pro-
gram due to its large number of rules for allowed chord pro-
gressions. In fact there are more than 600 of these particular
rules. A common way to optimize the performance of an ASP
program is the reduction of possible choices by abstraction.
Therefore, the music theory behind the program was analyzed
once more to discover a way to abstract chord progressions:
instead of an extra rule for each and every valid chord pro-
gression, all chords were put in one of three groups to which
the same rules for succeeding chords could be applied. The
first group contains all triads in no or the first inversion, the
second group all second inversions and the third group con-
tains all seventh chords in all their inversions. These groups

are represented by rules like group/2 in the lines 1 to 3 of
Listing 3 which describes group 1 as explained above. Lines
5 to 9 show the new version of next_step/2 which we in-
troduced in Listing 2. Now the rule describes valid progres-
sions for groups of chords instead of a single specific chord.
For a detailed explanation of these formulas you may refer to
(Opolka 2012).

1 2 {group((T,0), (T, 0));
2 group((T,0), (((T+1)\7)+1, 6))}2 :-
3 scale_step_inversion((T,0)).

5 next_step((T1,0), (T2,46)) :-
6 group((T1,0),_); group((T2,46),_);
7 1 { T2 = T1 \7+1;
8 T2 = (T1+3)\7+1;
9 T2 = (T1+5)\7+1 }.

Listing 3: Abstract rules for chord progressions

To illustrate the differences in the implementation’s per-
formance before and after, Table 1 shows a comparison of
resource-related statistical data for the problem instance of
generating a 5 chord cadenza in C Major, which was run with
gringo 4.4.0 and clasp 2.1.4 on an Intel(R) Celeron(R) CPU
1017U @ 1.60GHz with 4 GB RAM. Furthermore, we mod-
ified the experiment by increasing the number of chords to 6
which yielded no results for the naive encoding after running
for 30 mins, whereas the abstract encoding was even capable
to find a 50 chord cadenza within 5.5 seconds.

statistics naive encoding abstract encoding
Time : 6.350s 3.004s
CPU Time : 6.300s 2.970s
Choices : 121 40
Conflicts : 12 4
Atoms : 15928 11120
Rules : 36559 19628
Equivalences : 33676 23098
Variables : 8253 3001
Constraints : 37463 13380

Table 1: Excerpt from clasp’s statistics output when generat-
ing a 5 chord cadenza

Future Works and Conclusion
In this work we introduced a method to create musical pieces
of many different genres on the basis of one chord progres-
sion. With minimal (and not neccessarily required) input
through the user chasp autonomously generates music based
on rules regarding harmony theory and genres.

Particularly, the declarative nature of our approach makes
it convenient to add and change rules to describe the underly-
ing concepts of composition. An obvious future enhancement
for chasp lies, thus, in the addition of further genres through
additional lilypond templates. It might be worth considering
the possibility to convert part of the information used to create
these templates into rules for ASP. Currently, the possibility
to create a 4-voices homophonic choral is in development. In-
tegrating additional types of chords and their specific rules in

our approach poses an increasing challenge. So does enhanc-
ing the current result by adding a melody to the accompani-
ments as well as rhythm for the choral output. Besides that,
it may also be worth considering to add the possibility to re-
verse the current work flow and create an accompaniment to
an already existing melody.

Acknowledgments This work was partially funded by
DFG grant SCHA 550/9-1. We are grateful to the anonymous
reviewers for their suggestions.

Authors Biographies
Philipp Obermeier is a research assistant in the Knowledge-
Based Systems group at University of Potsdam, Germany.
His scientific interest is centered around Answer Set Pro-
gramming and the development of declarative languages for
dynamic domains.

Sarah Opolka received the M.Ed. for the main fields Mu-
sic and Computer Science from the University of Potsdam in
2015. Her master thesis on chasp is based on her bachelor
thesis on automatic composition.

References
AMES, C. 1987. Automated composition in retrospect: 1956-
1986. In Leonardo Vol. 20, No. 2, Special Issue: Visual Art,
Sound, Music and Technology, 169–185.
BARAL, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.
BOENN, G.; BRAIN, M.; DE VOS, M. and FFITCH, J. 2010.
Automatic Music Composition using Answer Set Program-
ming. In Theory and Practice of Logic Programming.
BREWKA, G.; EITER, T. and TRUSZCZYŃSKI, M. 2011.
Answer set programming at a glance. Communications of
the ACM 54 (12), 92–103
CALIMERI, F.; FABER, W.; GEBSER, M.;
IANNI, G.; KAMINSKI, R.; KRENNWALLNER, T.;
LEONE, N.; RICCA, F. and SCHAUB. T 2012.
ASP-Core-2: Input language format. Available at
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-
2.0.pdf
EBICOGLU, K. 1986. An expert system for chorales harmo-
nization. In Proceedings of the Fifth National Conference on
Artificial Intelligence (AAAI-86), 784–788.
EBICOGLU, K. 1990. An expert system for harmonizing
chorales in the style of J. S. Bach. In Journal of Logic Pro-
gramming Vol. 8, No. 1, 145–185.
FRANK, B 1996. Rhythm-Styles for Piano, Vol. 1. Schott.
FRANK, B 1997. Rhythm-Styles for Piano, Vol. 2. Schott.
GEBSER, M.; KAUFMANN, B.; NEUMANN, A. and
SCHAUB, T. 2007. clasp: A Conflict-Driven Answer Set
Solver. In Proceedings of the Ninth International Confer-
ence on Logic Programming and Nonmonotonic Reasoning
(LPNMR’07), 136-148.

HILLER, L. A. and ISAACSON , L. M. 1959. Experimental
music. Composition with an electronic computer. In Journal
of Music Theory Vol. 3, No. 2, 302–306. Duke University
Press, on behalf of the Yale University Department of Music.
KOENIG, G. M. 1971. The use of computer pro-
grams in creating music. In Music and Technology
(Proceedings of the Stockholm Meeting organized
by UNESCO). Paris: La Revue Musicale. 93-115.
http://www.koenigproject.nl/Computer_in_Creating_Music.pdf
KOENIG, G. M. 1978. Programmed music.
http://www.koenigproject.nl/Programmed_Music.pdf
KROEPEL, B. 1977 Piano Rhythm Patterns. Mel Bay Publi-
cations, Inc.
LEONE, N.; PFEIFER, G.; FABER, W.; EITER, T.; GOTT-
LOB, G.; PERRI, S. and SCARCELLO, F. 2006. The DLV
System for Knowledge Representation and Reasoning. ACM
Trans. Comput. Logic Vol. 7, No. 3, 499–562.
MCCARTNEY, J. 1996. Supercollider: a new real time syn-
thesis language. In Proceedings of the 1996 International
Computer Music Conference, 257–258
MOZART W. A. 1793. Anleitung so viel Walzer oder
Schleifer mit zwei Würfeln zu componiren so viel man will
ohne musikalisch zu seyn noch etwas von der Composition zu
verstehen. KV Anh. 294d, J. J. Hummel, Berlin-Amsterdam.
MYHILL, J. 1978. Some simplifications and improvements
in the stochastic music program. In Proceedings of the 1978
International Computer Music Conference.
OPOLKA S. 2012. Theoretische Grundlagen der automatis-
chen Komposition. Bachelor Thesis, University of Potsdam.
PACHET, F. 2002. Playing with virtual musicians: the con-
tinuator in practice. In IEEE Multimedia, Vol. 3, 77–82.
PÉREZ, F. O. E. and RAMÍREZ, F. A. A. 2011. Armin: Au-
tomatic Trance Music Composition using Answer Set Pro-
gramming. In Fundamenta Informaticae Vol. 113, 79–96.
POTASSCO, 2014. Potassco website. Available at
http://potassco.sourceforge.net
SCHÖNBERG, A. 1966. Harmonielehre. Universal Edition,
Wien.
SIMONS, P.; NIEMELÄ, I.; and SOININEN, T. 2002. Extend-
ing and implementing the stable model semantics. Artificial
Intelligence 138(1-2):181-234.
WANG, G. and COOK , P. R. 2003. Chuck: A concurrent,
on-the-fly, audio programming language. In Proceedings of
the 2003 International Computer Music Conference.
XENAKIS, I. 1971. Formalized music: Thought and mathe-
matics in composition. Pendragon Press.

