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Abstract
Segmenting  music  is  important  in  academic  and  commercial
settings.  Imitating  musical  structure  requires  interpretation  and
generalization of discovered structure. The program shown here
is a work in progress that demonstrates an approach to structure
imitation  using  a  segmentation  algorithm  with  a  look  back
algorithm based on a probabilistic variant of kNN. A monophonic
piece of music is segmented, then  kNN is used to generate the
structure  of  a  new piece.  This  work  shows  that  although  the
problem of structure generation is complex, it is not clear that a
solution must be similarly complex.
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 Introduction
Discovering the structure of a piece of music is important
for academics and commercial music outlets. There are a
variety of approaches to the task of melodic segmentation.
[1]  Still,  the  structure  of  music  is  difficult  to  quantify
because  it  is  a  combination  of  artistic  and  cultural
preferences.  It  is  even  more  difficult  to  interpret  the
structure of a piece and use that information in a generative
music  algorithm.  This  requires  not  only  segmenting  a
piece,  but  understanding how to create  similar  segments
that can be reconfigured creatively while conforming to the
style of the original. 

The task of style imitation has been explored by many
authors  and  composers.  [2,  3]  The  work  presented  here
deals  with  the  specific  task  of  structure  imitation.  This
paper  presents  the  prototype  of  a  system  for  structure
imitation using simple machine learning techniques.  The
data  extracted  from this  preliminary  work  reveals  some
interesting insights into the task of structure imitation.

The work presented here is in progress. It does not deal
with  musical  form,  which  I  differentiate  from  musical
structure. Form requires a beginning and an ending while
structure  only  indicates  non-random  change  over  time.
This work also employs an ad-hoc segmentation technique
using  a  self-similarity  matrix.  Other  segmentation
techniques  will  be  inserted  into  this  algorithm  as  the
project continues.

There is a lot of work on melody segmentation. [4] On
the  specific  task  of  imitating  musical  structure
algorithmically, many composers have published strategies
they have used in their own algorithmic pieces. [5, 6]

This  work  was  motivated  by  a  search  for  a  simple
algorithm that generates satisfying musical structure in my
own algorithmic pieces. In previous experiments, I found
that structure could be generated from simple systems. [7]
One of the simplest structural algorithms is the look back
algorithm.  The  look  back  algorithm  generates  musical
structure  by  repeated  previously  generated  material  and
optionally transforming it. In this work, I wanted to see if I
could implement a probabilistic look back algorithm on a
segmented melody to imitate the structure in that melody.

Procedure
This program works in two stages, analysis and generation.
In  the  first  stage,  the  software  analyzes  a  monophonic
piece of music in order to build a model of the structure of
the  piece.  In  the  second  stage,  that  model  is  used  to
generate a new piece of music with similar structure.

The analysis stage builds a three tiered model. Each tier
contains data at a different structural  level. In the lowest
tier,  each note is an instance containing features such as
pitch,  start  tick  in  the  source  midi  file,  and  duration  in
beats. The next level is the section model. In the section
tier,  each  discovered  section  is  an  instance  containing
features  such as note count,  mean pitch, and duration in
beats.  By  definition  the  section  tier  does  not  contain  a
particular  type  of  section.  The  sections  aren't  tied  to
phrases, or sections that a human analyst  might discover.
The sections are simply designed to hold whatever sections
are  discovered  by  the  segmenter.  The  top  tier  contains
pieces, which contain sections. In the current version of the
software,  only  one  piece  instance  is  used,  but  future
versions may employ multiple pieces. The piece instance
contains features such as pitch mean, pitch mode, duration
mean, and duration mode, although these features are not
used in the current program.

A  significant  challenge  in  the  analysis  phase  is  the
segmentation of the source midi file. There are many ways
to segment a piece of music. [8] The approach used here
employs a self-similarity matrix. This technique is loosely
based on other self-similarity approaches, but it has been
experimentally modified for the current project. [9]



The segmentation algorithm begins by generating a self-
similarity matrix based on the distance between notes. The
distance  between  every  note  is  calculated  using  four
features: midi pitch number, pitch name, duration, and start
position in measure. In this distance function, one is added
to the distance for each non-matching feature. The distance
matrix  is  then  normalized  and  inverted  so  that  zero
represents  totally  dissimilar  notes,  while  one  represents
maximum  similarity.  An  edge  detection  algorithm  and
threshold then reveal the notes where similar sections most
commonly begin and end. The threshold is automatically
tuned to generate sections that average at least two notes in
length.

Figure 1. A self-similarity matrix of a short piece of music

The  analysis  stage  ends  by  calculating  the  mean,
median, mode, and standard deviation on several properties
of each section, including the pitch, duration, number of
notes,  duration,  and start  position in measure.  These are
used in the generation section to accept or reject generated
sections.

The generation stage relies on a probabilistic version of
the k-nearest  neighbors (kNN) algorithm that is  used for
prediction.  The  kNN  algorithm  is  typically  used  for
classification or regression. In this program, kNN is used
to generate new music data. The k nearest  neighbors are
discovered,  then  one  is  chosen  randomly.  In  the  trials
shown here, k was set to three for both notes and sections.
The next instance that is added to the output is whatever
comes  after  the  selected  neighbor.  Random  selection  is
necessary in a procedural content program. If the program
always selected the nearest neighbor then it would always
generate  very  similar,  repetitive  music.  The  randomness
allows it to pick between several options that occurred in
the training data.

The probabilistic kNN algorithm is used in two ways.
First it is used to pick a model section that determines the
features  of  the  section  that  should  come  next  in  the
generated piece. Then the section randomly becomes either
a look back section, which repeats earlier material, or it is
filled  with  notes  picked  using  the  probabilistic  kNN
algorithm on notes. 

Results
The program is not yet optimized to generate the quantity
of data necessary to judge its performance in general.  In
this paper I will simply list the results of small scale test

runs.  These  results  may  not  be  predictive  of  future
performance, but the data does shed light on the problem
of structure imitation.

In each of these tests I generated three pieces. The piece
in column A was generated by randomly selecting notes
from the input file. The piece in column B was generated
by using the probabilistic kNN algorithm on notes alone,
with no attempt to model structure. The piece in column C
was generated using the method detailed above.

Each piece was then segmented using the self-similarity
algorithm detailed previously. This algorithm only sees the
output  of  the  other  programs,  so  it  won't  necessarily
discover  the same sections as  those that  were generated.
Then  each  section  was  analyzed  based  on  note  count,
duration, and section start position. This data is intended to
show  the  similarity  between  the  segments  in  the  input
music  and  the  segments  in  the  generated  music.  It's
difficult to quantify the structural similarity between two
pieces  of  music.  A  better  method  might  include  human
ratings of structural similarity, but that is beyond the means
of this research.

In the tables shown here, I chose to look at the results
generated  from  three  pieces.  The  first  table  shows  the
results from a run on the first movement of Bach's Partita
for Flute 1. The second table shows the results from a run
on  the  melody  of  a  folk  song  called  The  Wonderful
Crocodile. The third table shows the results from a run on
a short piece of my own composition called  Short Piece
01. The Bach Partita has very regular phrases that respect
measure boundaries. The folk song has slighly less regular
phrases. My own piece only rarely bounds phrases based
on measures.

First Movement from Partita for Flute 1 by J.S. Bach

Source A B C

notes in piece 1024 1024 1024 1047

sections discovered 66 66 64 65

notes per section

  mean 15.5 15.42 15.92 15.98

  mode 16 16 16 16

  std deviation 2.22 2.12 1.02 0.12

duration (12ths of a beat)

  mean 46.87 47.27 48.0 47.98

  mode 48 48 48 48

  std deviation 4.87 4.30 4.24 0.12

start position in measure (12ths of a beat)

  mode 0 0 0 0
Table 1. Sections discovered in music based on Partita 1 for Flute
by J. S. Bach



The Wonderful Crocodile

Source A B C

notes in piece 92 92 92 80

sections discovered 10 10 10 10

notes per section

  mean 9.1 6.6 8.9 6.9

  mode 6 3 7 6

  std deviation 5.24 3.38 3.75 2.21

duration (12ths of a beat)

  mean 120.0 96.0 120.0 96.0

  mode 96 54 96 96

  std deviation 53.66 38.23 45.61 30.35

start position in measure (12ths of a beat)

  mode 0 36 0 0
Table 2. Sections discovered in music based on the folk song The
Wonderful Crocodile

Short Piece 01 by Evan X. Merz

Source A B C

notes in piece 76 76 76 90

sections discovered 13 13 14 17

notes per section

  mean 5.69 5.61 5.28 5.11

  mode 2 4 2 2

  std deviation 3.53 2.78 3.21 3.21

duration (12ths of a beat)

  mean 48.0 45.0 41.64 42.58

  mode 48 32 48 48

  std deviation 21.04 24.70 20.55 19.24

start position in measure (12ths of a beat)

  mode 0 1 0 0
Table 3. Sections discovered in music based on Short Piece 01 by
Evan X. Merz

Discussion
These data are inconclusive, but they elucidate the problem
of generating musical structure in several interesting ways.

In  each test,  the random music program generated the
most  chaotic  structure,  the  approach  outlined  here
generated the most regular structure, and the kNN on notes
only was somewhere in the middle. This is shown by the
standard deviation of the notes per section and duration in
twelfths of a beat. The regularity generated by the program
outlined here does not necessarily represent the structure

that occurs in the source piece, as the discovered sections
in the Bach piece are not as regular as the generated ones.
This is partially a result of using a note's  position in the
measure as a feature in the segmentation algorithm.

In  the  other  pieces,  this  approach  clearly  generated
structure closer to that of the source file than was generated
by randomly selecting pitches from the source file. It is not
clear that this approach imitated the structure of the source
piece any better than the system that generated music using
probabilistic  kNN  on  notes  alone.  This  is  interesting
because it  implies that  the structure  of  a piece of  music
emerges  from the  notes.  This  may be  obvious  from the
perspective of a musicologist, but it means that generating
musical structure does not absolutely require an approach
that models musical structure.

The  data  tables  do  not  reveal  anything  about  the
qualitative experience  of  listening to  the music that  was
generated  with  no  attempt  to  model  structure  versus
listening  to  the  music  generated  by  a  system  that  does
model  structure.  The  following  two  images  show  the
structure discovered in Short Piece 01 versus the structure
discovered in a piece that was generated by imitating the
structure in that piece. The top of each image is the start of
the piece.  Each  line  represents  the  start  of  a  discovered
section. These images show the relationship between the
internal  structure  of  each  piece,  with  clusters  of  short
sections interspersed with groups of longer sections.

Figure 2. Sections discovered in Short Piece 01

Figure 3. Sections generated using segmentation and kNN



This program is still very limited, and as the data show, it
will  need  significant  changes  to  actually  emulate  the
structure or form of a piece of music. This program does
not  model  beginnings  or  endings,  nor  does  it  have  any
representation  of  the  large  scale  flow  of  sections
throughout  a  piece.  It  relies  on  a  single  piece  to  infer
musical structure, which may be made easier by the use of
many pieces. Future versions of this program will compare
the  results  of  imitating  musical  structure  using  various
segmentation algorithms.

Conclusion
The program shown here is a work in progress that uses a
machine  learning  approach  to  model  musical  structure.
This  work shows that  although the problem of  structure
generation is complex, it is not clear that a solution must be
similarly complex. Basic structure  can be imitated using
the look back algorithm and kNN. This work also shows
that  to some still  uncertain  degree  musical  structure  can
emerge from a model of the note level alone. More work is
necessary to determine the general  effectiveness of these
algorithms,  and  to  disambiguate  the  idea  of  musical
structure as it relates to musical metacreation.
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