
Musical Structure Imitation using Segmentation,
and k-Nearest Neighbors (kNN)

Evan X. Merz

San Jose State University
San Jose, CA. USA
evan.merz@sjsu.edu

Abstract
Segmenting music is important in academic and commercial
settings. Imitating musical structure requires interpretation and
generalization of discovered structure. The program shown here
is a work in progress that demonstrates an approach to structure
imitation using a segmentation algorithm with a look back
algorithm based on a probabilistic variant of kNN. A monophonic
piece of music is segmented, then kNN is used to generate the
structure of a new piece. This work shows that although the
problem of structure generation is complex, it is not clear that a
solution must be similarly complex.

Keywords
algorithmic music, machine learning, style imitation,
segmentation, k nearest neighbors, midi, self similarity, structure,
form

 Introduction
Discovering the structure of a piece of music is important
for academics and commercial music outlets. There are a
variety of approaches to the task of melodic segmentation.
[1] Still, the structure of music is difficult to quantify
because it is a combination of artistic and cultural
preferences. It is even more difficult to interpret the
structure of a piece and use that information in a generative
music algorithm. This requires not only segmenting a
piece, but understanding how to create similar segments
that can be reconfigured creatively while conforming to the
style of the original.

The task of style imitation has been explored by many
authors and composers. [2, 3] The work presented here
deals with the specific task of structure imitation. This
paper presents the prototype of a system for structure
imitation using simple machine learning techniques. The
data extracted from this preliminary work reveals some
interesting insights into the task of structure imitation.

The work presented here is in progress. It does not deal
with musical form, which I differentiate from musical
structure. Form requires a beginning and an ending while
structure only indicates non-random change over time.
This work also employs an ad-hoc segmentation technique
using a self-similarity matrix. Other segmentation
techniques will be inserted into this algorithm as the
project continues.

There is a lot of work on melody segmentation. [4] On
the specific task of imitating musical structure
algorithmically, many composers have published strategies
they have used in their own algorithmic pieces. [5, 6]

This work was motivated by a search for a simple
algorithm that generates satisfying musical structure in my
own algorithmic pieces. In previous experiments, I found
that structure could be generated from simple systems. [7]
One of the simplest structural algorithms is the look back
algorithm. The look back algorithm generates musical
structure by repeated previously generated material and
optionally transforming it. In this work, I wanted to see if I
could implement a probabilistic look back algorithm on a
segmented melody to imitate the structure in that melody.

Procedure
This program works in two stages, analysis and generation.
In the first stage, the software analyzes a monophonic
piece of music in order to build a model of the structure of
the piece. In the second stage, that model is used to
generate a new piece of music with similar structure.

The analysis stage builds a three tiered model. Each tier
contains data at a different structural level. In the lowest
tier, each note is an instance containing features such as
pitch, start tick in the source midi file, and duration in
beats. The next level is the section model. In the section
tier, each discovered section is an instance containing
features such as note count, mean pitch, and duration in
beats. By definition the section tier does not contain a
particular type of section. The sections aren't tied to
phrases, or sections that a human analyst might discover.
The sections are simply designed to hold whatever sections
are discovered by the segmenter. The top tier contains
pieces, which contain sections. In the current version of the
software, only one piece instance is used, but future
versions may employ multiple pieces. The piece instance
contains features such as pitch mean, pitch mode, duration
mean, and duration mode, although these features are not
used in the current program.

A significant challenge in the analysis phase is the
segmentation of the source midi file. There are many ways
to segment a piece of music. [8] The approach used here
employs a self-similarity matrix. This technique is loosely
based on other self-similarity approaches, but it has been
experimentally modified for the current project. [9]

The segmentation algorithm begins by generating a self-
similarity matrix based on the distance between notes. The
distance between every note is calculated using four
features: midi pitch number, pitch name, duration, and start
position in measure. In this distance function, one is added
to the distance for each non-matching feature. The distance
matrix is then normalized and inverted so that zero
represents totally dissimilar notes, while one represents
maximum similarity. An edge detection algorithm and
threshold then reveal the notes where similar sections most
commonly begin and end. The threshold is automatically
tuned to generate sections that average at least two notes in
length.

Figure 1. A self-similarity matrix of a short piece of music

The analysis stage ends by calculating the mean,
median, mode, and standard deviation on several properties
of each section, including the pitch, duration, number of
notes, duration, and start position in measure. These are
used in the generation section to accept or reject generated
sections.

The generation stage relies on a probabilistic version of
the k-nearest neighbors (kNN) algorithm that is used for
prediction. The kNN algorithm is typically used for
classification or regression. In this program, kNN is used
to generate new music data. The k nearest neighbors are
discovered, then one is chosen randomly. In the trials
shown here, k was set to three for both notes and sections.
The next instance that is added to the output is whatever
comes after the selected neighbor. Random selection is
necessary in a procedural content program. If the program
always selected the nearest neighbor then it would always
generate very similar, repetitive music. The randomness
allows it to pick between several options that occurred in
the training data.

The probabilistic kNN algorithm is used in two ways.
First it is used to pick a model section that determines the
features of the section that should come next in the
generated piece. Then the section randomly becomes either
a look back section, which repeats earlier material, or it is
filled with notes picked using the probabilistic kNN
algorithm on notes.

Results
The program is not yet optimized to generate the quantity
of data necessary to judge its performance in general. In
this paper I will simply list the results of small scale test

runs. These results may not be predictive of future
performance, but the data does shed light on the problem
of structure imitation.

In each of these tests I generated three pieces. The piece
in column A was generated by randomly selecting notes
from the input file. The piece in column B was generated
by using the probabilistic kNN algorithm on notes alone,
with no attempt to model structure. The piece in column C
was generated using the method detailed above.

Each piece was then segmented using the self-similarity
algorithm detailed previously. This algorithm only sees the
output of the other programs, so it won't necessarily
discover the same sections as those that were generated.
Then each section was analyzed based on note count,
duration, and section start position. This data is intended to
show the similarity between the segments in the input
music and the segments in the generated music. It's
difficult to quantify the structural similarity between two
pieces of music. A better method might include human
ratings of structural similarity, but that is beyond the means
of this research.

In the tables shown here, I chose to look at the results
generated from three pieces. The first table shows the
results from a run on the first movement of Bach's Partita
for Flute 1. The second table shows the results from a run
on the melody of a folk song called The Wonderful
Crocodile. The third table shows the results from a run on
a short piece of my own composition called Short Piece
01. The Bach Partita has very regular phrases that respect
measure boundaries. The folk song has slighly less regular
phrases. My own piece only rarely bounds phrases based
on measures.

First Movement from Partita for Flute 1 by J.S. Bach

Source A B C

notes in piece 1024 1024 1024 1047

sections discovered 66 66 64 65

notes per section

 mean 15.5 15.42 15.92 15.98

 mode 16 16 16 16

 std deviation 2.22 2.12 1.02 0.12

duration (12ths of a beat)

 mean 46.87 47.27 48.0 47.98

 mode 48 48 48 48

 std deviation 4.87 4.30 4.24 0.12

start position in measure (12ths of a beat)

 mode 0 0 0 0
Table 1. Sections discovered in music based on Partita 1 for Flute
by J. S. Bach

The Wonderful Crocodile

Source A B C

notes in piece 92 92 92 80

sections discovered 10 10 10 10

notes per section

 mean 9.1 6.6 8.9 6.9

 mode 6 3 7 6

 std deviation 5.24 3.38 3.75 2.21

duration (12ths of a beat)

 mean 120.0 96.0 120.0 96.0

 mode 96 54 96 96

 std deviation 53.66 38.23 45.61 30.35

start position in measure (12ths of a beat)

 mode 0 36 0 0
Table 2. Sections discovered in music based on the folk song The
Wonderful Crocodile

Short Piece 01 by Evan X. Merz

Source A B C

notes in piece 76 76 76 90

sections discovered 13 13 14 17

notes per section

 mean 5.69 5.61 5.28 5.11

 mode 2 4 2 2

 std deviation 3.53 2.78 3.21 3.21

duration (12ths of a beat)

 mean 48.0 45.0 41.64 42.58

 mode 48 32 48 48

 std deviation 21.04 24.70 20.55 19.24

start position in measure (12ths of a beat)

 mode 0 1 0 0
Table 3. Sections discovered in music based on Short Piece 01 by
Evan X. Merz

Discussion
These data are inconclusive, but they elucidate the problem
of generating musical structure in several interesting ways.

In each test, the random music program generated the
most chaotic structure, the approach outlined here
generated the most regular structure, and the kNN on notes
only was somewhere in the middle. This is shown by the
standard deviation of the notes per section and duration in
twelfths of a beat. The regularity generated by the program
outlined here does not necessarily represent the structure

that occurs in the source piece, as the discovered sections
in the Bach piece are not as regular as the generated ones.
This is partially a result of using a note's position in the
measure as a feature in the segmentation algorithm.

In the other pieces, this approach clearly generated
structure closer to that of the source file than was generated
by randomly selecting pitches from the source file. It is not
clear that this approach imitated the structure of the source
piece any better than the system that generated music using
probabilistic kNN on notes alone. This is interesting
because it implies that the structure of a piece of music
emerges from the notes. This may be obvious from the
perspective of a musicologist, but it means that generating
musical structure does not absolutely require an approach
that models musical structure.

The data tables do not reveal anything about the
qualitative experience of listening to the music that was
generated with no attempt to model structure versus
listening to the music generated by a system that does
model structure. The following two images show the
structure discovered in Short Piece 01 versus the structure
discovered in a piece that was generated by imitating the
structure in that piece. The top of each image is the start of
the piece. Each line represents the start of a discovered
section. These images show the relationship between the
internal structure of each piece, with clusters of short
sections interspersed with groups of longer sections.

Figure 2. Sections discovered in Short Piece 01

Figure 3. Sections generated using segmentation and kNN

This program is still very limited, and as the data show, it
will need significant changes to actually emulate the
structure or form of a piece of music. This program does
not model beginnings or endings, nor does it have any
representation of the large scale flow of sections
throughout a piece. It relies on a single piece to infer
musical structure, which may be made easier by the use of
many pieces. Future versions of this program will compare
the results of imitating musical structure using various
segmentation algorithms.

Conclusion
The program shown here is a work in progress that uses a
machine learning approach to model musical structure.
This work shows that although the problem of structure
generation is complex, it is not clear that a solution must be
similarly complex. Basic structure can be imitated using
the look back algorithm and kNN. This work also shows
that to some still uncertain degree musical structure can
emerge from a model of the note level alone. More work is
necessary to determine the general effectiveness of these
algorithms, and to disambiguate the idea of musical
structure as it relates to musical metacreation.

References
1. Marcus Pearce, Daniel Müllensiefen, and Geraint A. Wiggins,
"A Comparison of Statistical and Rule-Based Models of Melodic
Segmentation" (paper presented at The Ninth International
Conference on Music Information Retrieval, Philadelphia, PA,
2008).
2. David Cope, Virtual Music: Computer Synthesis of Musical
Style (Cambridge: MIT Press, 2004).
3. Olivier Lartillot, Schlomo Dubnov, Gerard Assayag, and Gill
Bejerano, “Automatic Modeling of Musical Style” (paper
presented at The International Computer Music Conference,
Havana, Cuba, 2001).
4. Pearce, “A Comparison.”
5. Cope, Virtual Music.
6. Arne Eigenfeldt, “Generating Structure: Towards Large-Scale
Format Generation” (paper presented at the 3 rd International
Workshop on Musical Metacreation, Raleigh, North Carolina,
October 4, 2014).
7. Evan Merz, “Composing with All Sound Using the FreeSound
and Wordnik APIs” (paper presented at the 1st International
Workshop on Musical Metacreation, Boston, Massachusetts,
2013).
8. Pearce, “A Comparison.”
9. Jonathan Foote, and Matthew Cooper, “Visualizing Musical
Structure and Rhythm via Self-Similarity” (paper presented at
The International Computer Music Conference, Havana, Cuba,
2001).

Bibliography
Cambouropoulos, Emilios. "The local boundary detection model
(LBDM) and its application in the study of expressive timing." In
Proceedings of the international computer music conference, pp.
17-22. 2001.

Cope, David. Virtual Music: Computer Synthesis of Musical
Style. Cambridge: MIT Press, 2004.
Conklin, Darrell, and Christina Anagnostopoulou.
“Representation and Discovery of Multiple Viewpoint Patterns.”
Paper presented at The International Computer Music
Conference, Havana, Cuba, 2001.
Ehmann, Andreas F., Mert Bay, J. Stephen Downie, Ichiro
Fujinaga, and David De Roure. “Music Structure Segmentation
Algorithm Evaluation: Expanding on MIREX 2010 Analyses and
Datasets. Paper presented at the 12th International Society for
Music Information Retrieval Conference, Miami, Florida,
October 24-28, 2011.
Eigenfeldt, Arne. “Generating Structure: Towards Large-Scale
Format Generation.” Paper presented at the 3rd International
Workshop on Musical Metacreation, Raleigh, North Carolina,
October 4, 2014.
Ferrand, Miguel, Peter Nelson, and Geraint Wiggins. “A
Probabilistic Model for Melody Segmentation.” Paper presented
at the 2nd International Conference on Music and Artificial
Intelligence, 2002.
Foote, Jonathan, and Matthew Cooper. “Visualizing Musical
Structure and Rhythm via Self-Similarity.” Paper presented at
The International Computer Music Conference, Havana, Cuba,
2001.
Lartillot, Olivier, Shlomo Dubnov, Gerard Assayag, and Gill
Bejerano. “Automatic Modeling of Musical Style.” Paper
presented at The International Computer Music Conference,
Havana, Cuba, 2001.
Merz, Evan. “Composing with All Sound Using the FreeSound
and Wordnik APIs.” Paper presented at the 1st International
Workshop on Musical Metacreation, Boston, Massachusetts,
2013.
Meudic, Benoit, and Emmanuel St. James. “Automatic Extraction
of Approximate Repetitions in Polyphonic Midi Files Based on
Perceptive Criteria.” In Computer Music Modeling and Retrieval,
124-142. Berlin: Springer.
Pearce, Marcus, and Geraint A. Wiggins. “Improved Methods for
Statistical Modelling of Monophonic Music.” Journal of New
Music Research 33, no. 4 (2004): 367-385.
Pearce, Marcus, Daniel Müllensiefen, and Geraint A. Wiggins.
"A Comparison of Statistical and Rule-Based Models of Melodic
Segmentation." Paper presented at The Ninth International
Conference on Music Information Retrieval, Philadelphia, PA,
2008.
Paulus, Jouni, Meinard Muller, and Anssi Klapuri. “State of the
Art Report: Audio-Based Music Structure Analysis.” Paper
presented at The International Society for Music Information
Retrieval Conference, Utrecht, Netherlands, 2010.
Spevak, Christian, Belinda Thom, and Karin Höthker.
"Evaluating melodic segmentation." In Music and Artificial
Intelligence, pp. 168-182. Springer Berlin Heidelberg, 2002.

Author Biography
Evan X. Merz earned a Master's Degree in electronic music from
Northern Illinois University in 2010. He earned a doctorate in
algorithmic composition from The University of California at
Santa Cruz in 2013. Currently he teaches computer science at San
Jose State University.

