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Abstract
A procedure for generating sound using visual information is
outlined that allows for a data artist to interpret a visual work of
art using the parameters of an Inverse Discrete Fourier
Transform. This paper discusses the historical progression of
musicians responding to visual artists, as well as the relevance of
parametric articulation and how it relates to the science of audio
analysis. A process is outlined that discusses how such techniques
can be used to generate sonic art installation and performance. 
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 1. Introduction
There is a historical tradition of composers drawing
inspiration from visual art.  Modest Mussorgsky's “Pictures
at an Exhibition” was famously based on the work of artist
Viktor Hartmann. Mussorgsky planned to “draw in
pictures” the watercolors and drawings of his recently
deceased friend. [1] Morton Feldman emulated the work of
the abstract expressionists, which inspired the composer to
attempt a music that was “more direct, more immediate,
more physical than anything that had existed heretofore.”
[2] These composers and others like them were working
with the inspiration drawn from art, and in turn, exploring
how to directly transform visual works into sound. 

Our motivation was drawn from this tradition, as we
utilized a more direct way to generate music and sound
based on visual artworks. While the human element of
translating visual art into sound may be partially obscured
by procedural techniques, the technique outlined still
allows for ample subjective control of the resulting sound.

Other applications do exist that can sonify digital images
in real time. SonarX, while originally meant to aid blind
users, has found applications for art and performance. [3]
SonarX has mappings for pitch scale, timber, and other
musical parameters. This paper does not wish to
delegitimize this use, but instead offers a different way of
sonification that uses only the IFFT itself.

This paper will first discuss the use of the Inverse
Discrete Fourier Transform and its legitimacy as an
interpretive tool. It will then outline the process of
generating sound from images and discuss any technical or
subjective considerations that arise. Finally, it will discuss

the aesthetics of the discussed method, as well as the
application of such a process for installation and
performance.

2. Inverse Fast-Fourier Transform 
and Composition 

A direct translation from image to sound is available using
an Inverse Fast-Fourier Transform (IFFT), as sound can be
generated directly from the visual data of various works of
art. To explain the motivation behind using an IFFT on
images, the process of using a Fast-Fourier Transform
(FFT) on audio must first be touched upon.

It is common in the field of Music Information Retrieval
to utilize a Fast-Fourier Transform to gain meaningful
information from a piece of audio. Likewise, it is also
common to display this information as an image that
represents the frequency content of the audio, see Figure 1.

Figure 1. A spectrogram of a vocal excitation containing the
words “All the while it still..”.

The above image is a frequency domain representation
of audio. A Fast-Fourier Transform is utilized to analyze
several frames of the audio, which are then sequentially
ordered in the image above.

Even though by using a reversal of this process it is
possible to reconstruct the audio from the information that
was extracted from the original audio, it is also possible to
utilize this same reconstruction process starting with visual
data that was not originally audio. This is done by using an
Inverse Fast-Fourier Transform to turn images into sound
instead of using the Fast-Fourier Transform to turn sound
into images.



Our motivation behind this method of sound generation
is based on the compelling visual similarities between
spectrograms and the work of modernist painters. A natural
curiosity arises to imagine how a Mark Rothko or a
Jackson Pollack painting might sound. While a
spectrogram is not the only way to visually represent sonic
data, it is germane when comparing modernist paintings to
a visual representation of sound. 

This method of sound generation is a natural extension
of the ones used by composers who have relied strictly on
process and acoustics to guide their compositions. James
Tenney would compose his music according to a process
“for the sake of perceptual insight,” as many of his
compositions were guided by acoustics. [4] Directly
translating works of art using an IFFT follows a similar
procedural method and allows for a glimpse at the
perceptual insights that Tenney sought. 

In the music of Tenney, parametric focus and parametric
articulation surpass pitch, as he stresses “the greater
importance that has been given in 20th-century music to
all the parameters of musical sound.” [5] In this tradition,
parametric articulation stands alongside other aspects of
music such as pitch, texture, or rhythm. Following in
Tenney's footsteps, conventions can be established to stay
within the confines of a process when utilizing an IFFT,
which are determined by the program in which the data
artist utilizes an IFFT. Examples of such options are the
amount of frame overlapping, the IFFT-size, or the type of
windowing. These will be discussed more in depth further
in the paper, but for now serve to elucidate how the
technical parameters of the IFFT become the
compositional and interpretive methods of the construction
process.  

After the IFFT procedure is complete, no post-
processing of the resulting audio is done. The IFFT is
sufficient for the data artist to who wishes to create a direct
translation of a visual work. We posit that there is enough
interpretive control given the parameters of the IDFT that
there is no need for further interference. Since the
procedure involved is the IDFT itself, any further
modification of the of the audio would take focus off this
procedure. The resulting audio could be characterized as
raw and direct. Because our source material stems from
modernism, it is natural to also draw from their ideals.
Frank Stella famously described his work with the quote,
“My painting is based on the fact that only what can be
seen there is there.. What you see is what you see.” [6] In
our case, the audio is based on the fact that only what can
be seen is heard, what you see is what you hear.

3. System Design 
A digital scan or photograph of a painting exists in
computer memory as a collection of pixels. Because of the
manner in which audio is extracted from visual data, the
size of the image must be taken into account. The
resolution of the image corresponds with the amount of
audio generated; a larger image will generate more audio
content than a smaller image.

To put it in terms of an IFFT, the IFFT-size is linked
with the amount of samples produced. An IFFT-size of
1024 will produce exactly 1024 samples, while an an
IFFT-size of 256 will produce exactly 256 samples.

Considering that common IFFT sizes are generally
powers of 2 (256, 512, 1024), it will most likely be
necessary to resize the image. The data artist has a choice
as to what resolution they wish to resize their image to,
knowing that the pixel height they choose will determine
the length of their composition.

Color Space Considerations
Because color images have three channels of data (red,
green, and blue), further subjective choices are presented
when deciding on how to interpret the red, blue, and green
value of each pixel. Outlined are multiple methods for
handling the three channels. 

The first method consists of reducing the three color
channels down to a single grayscale channel. The first and
simplest choice is the luma equation, which is an average
of the three channels with weighting coefficients, shown in
Figure 2. [7]

Figure 2. Luma grayscale equation.

This is more perceptually accurate than simply
averaging all three channels, but it is possible to be more
perceptually accurate by converting to a CIE XYZ color
space and using the “luminance channel as a grayscale
representation of the original color image.” [8] The
luminance channel being Y in Figure 3.

Figure 3 CIE Y grayscale equation. [9]

Figure 4. The luma grayscale conversion (middle) and CIE Y
grayscale conversion (right) of Sean Ryan's “Soggy Spirits” (left),
printed with permission.

Because the three channels have been reduced to one,
we are also reducing the resulting number of audio
channels to one. While a grayscale conversion loses the
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original color data, necessary information about the image
is retained and an accurate aural representation can be
produced that is tied to human perception.

There is also the option to not convert to grayscale at all,
and instead give each color channel its own audio channel.
This route could be considered the most perceptually
inaccurate of the three. This approach also grants the
freedom to convert to any color space the data artist sees
fit, and allows for various spatialization techniques because
there are more audio channels resulting from the IFFT
process.

Mapping Color Components
Since our RGB values range from 0 to 255 and the
magnitudes of the IDFT algorithm range from 0.0 to 1.0,
we have the option of mapping our color components
linearly from the interval [0,255] to the interval [0.0, 1.0].
This preserves our grayscale conversion and is the most
straightforward approach.

We have also explored using standardization instead of
linear mapping, and found it useful in limiting the
influence of outliers in our spectrum. The equation is
shown in Figure 5.

Figure 5. The standardization, which is the removal of the mean divided 
by the standard deviation.

If we standardize, we ensure that the spectrum is not
skewed considerably by a datum that is significantly larger
than the others. The major drawback of standardizing our
data is that we begin to stray from our goal of creating a
direct sonic portrayal of the visual work. 

Inverse Fast-Fourier Transform 
An IFFT usually reads from complex numbers, which
consists of magnitude and phase. We will be mapping our
color components to the magnitude input of the spectrum,
and reading our image left-to-right with a left-bottom
origin.

An option can be taken to create artificial phase values
to feed into the IFFT alongside the visual data. This step is
not entirely necessary, but remains a subjective decision
for the data artist.

The hop size is the amount of overlap present between
sequential IFFT frames. Hop sizes are generally a fraction
of the IFFT-size, and are another consideration for the data
artist in determining the length of a composition. For
example, a hop size that is 50% of the IFFT-size will result
in a composition that is half the length of a composition
with a hop size of 100% (or no overlap).

Windowing is then performed to envelope the individual
audio frames generated by the IFFT. A variety of
envelopes were constructed based on the various window
functions used in an FFT. Subjectively, we found the

Parzen window to sound the best when applied to the audio
generated from the IFFT. The Hann, Blackman-Harris, and
Exponential window functions also performed well. The
equation for the Parzen window is provided in Figure 6. 

Figure 6. The equation for a Parzen window, which is to be used on the 
audio frames extracted from the IFFT. [10]

4. Aesthetics and Practice 
The resulting audio is extremely raw, but a significant
amount of information is heard. Each “row” of the painting
corresponds to a center frequency bin of the IFFT, which
provides sound throughout the entire audible spectrum
(granted program's sampling rate is set to 44100 or above).

Because the source material is treated with a limited
amount of interpretation, the data artist has created a
system that allows the painting itself to be heard instead of
only hearing the artist's interpretation of the painting. Thus
the meaning found in the sonification is shared between the
artist and the painting. This point is salient, considering
that sonification is “concerned with the creation of
representations of data that facilitate inference and
meaning making.” [11]

Both installation and performance are available to the
data artist. Off-line computation is done for installation
work, with the audio being presented alongside a visual
projection of the artwork used for analysis. Multiple works
of the same visual artist are typically presented by the
musician, ensuring a thematic continuity. The paintings of
Mark Rothko have been a favorite for their striking
similarity to spectrograms. The technical parameters of the
audio are altered per piece, and tailored to each image.
These parameters can be fine-tuned to highlight the aural
differences that arise from the visual differences between
these visual works, and more importantly, can also be seen
as an artist's interpretation of the work. The Python
programming language is used for off-line sonification,
with the data manipulation possible using the Numpy and
Scipy modules. 

Real-time performance by an artist is also available, the
variation of the technical parameters becoming paramount
to the performance. This allows the artist to respond to the
sonification in real-time. Performance is made possible by
the music programming language, ChucK. [12] A real-time
IFFT is utilized, and dynamic control of its parameters are
available to the performer. An excerpt of this code is
shown in Figure 7.
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fun complex[] calcWindow(float frame[], float mag, float

phase) 
{

complex X[frame.size()];
  

// loop for creating a fram
for (int i; i < bins; i++) {

// phase incrementing
(ph_inc[i] + ph[i]) % tau => ph[i];
polar temp;

      
// color components being assigned 

       Math.fabs(frame[i]) * mag => temp.mag;
      

// artificial phase being assigned
ph[i] * phase => temp.phase;

      
// result to be ChucKed to the 
// IFFT.transform 
temp $ complex => X[i];

}

return X;
}

fun float[] playWindow(complex X[], dur window) {
0 => X[0];
// inverse fft that reads the window
ifft.transform(X);

// dividing to envelope length
window/2.0 => env;

    
// sets attack and release of
// the window function envelope
win.setParzen();
win.attack(env);
win.release(env);

        
win.keyOn();
env => now;
win.keyOff();
env => now;

}

Figure 7. ChucK code including two functions. calcWindow()
implements artificial phase by phase-incrementing a series a sine
waves corresponding to the frequency bin it belongs to.
playWindow() sets the windowing function type (Parzen in this
case) and plays the inputted frame of visual data.

An understanding of the various IFFT parameters is
necessary for performance, with parametric articulation
allowing for expressive control over the general rhythm
and timbre of the piece. A reaction to the paintings by the
data artist is heard in real time, allowing both a direct
transformation of the visual data into audio, as well as a
raw interpretation of the painting by the performer. 

This interpretation is heard in how the performer allows
the IFFT to translate the data. A Triangular window could
be used instead of a Parzen window in if the performer
requires a rougher sound, or the sound can be made sparse
by decreasing the rate at which the data is read. 

The overall process allows the data artist individual
expression while still abiding to a principled process. The
manner of translation and parametric articulation continues
upon a compositional tradition, and allows for a direct yet
interpretive translation of visual art to sonic art.
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