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Abstract

A better understanding and control of expressive performance
gesture potentially could have a large and disruptive impact on
electronic media and movement performance practice. We use
digitally captured positional data, features extracted from this
positional data, and a variety of machine-learning algorithms,
to improve the accuracy of recognizing expressive qualities
of performance gestures, using concepts derived from Laban
Movement Analysis (LMA). Through these methods, we seek
to develop better human-computer interfaces, to expand ex-
pressive movement vocabularies, and to shift movement aes-
thetics, by empowering users to exploit their full performance
capabilities.
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Introduction
Human-computer interfaces rely on merging user abilities
and technological tools to form an enhanced performance
environment. While advances in technology have allowed
users to perform more complex tasks with greater ease, the
added technological challenges can hinder the movement and
expressive capabilities of the user. This interference limits
functionality and compromises the diverse pallet of expres-
sive movement qualities. We aim to create a more cognitively
transparent computer interaction system that maximizes em-
bodied knowledge based on movement, quantifiably captur-
ing and recognizing expressiveness present in performance
gesture.

Gesture in performance couples the functionality of
achieving a task with the expression of aesthetic qualities,
creating a dynamic and complex dual role. Our belief is
that the expressiveness in performance gesture comes from
subtleties of movement, extending beyond its practical func-
tion (i.e., “how a gesture is performed”(Caramiaux, Don-
narumma, and Tanaka 2015). Musical conducting provides
an excellent example of a gesture system that gleans expres-
sion from nuanced gesture, expanding the range of a conduc-
tor’s performance from micro cues to a grandiose breadth.
The work done in (Kolesnik and Wanderley 2004), (Maes
et al. 2013), and (Morita, Hashimoto, and Ohteru 1991) all

point toward taking advantage of this broad vocabulary, driv-
ing different technologies through movement. Our work sim-
ilarly attempts to dissect a performer’s gestural range, dis-
covering the subtleties and range of their movement through
feature extraction, statistical measures, and machine learn-
ing. Through this analysis, gestural nuance can be applied to
technological interactions with greater control and more ex-
pressive means.

We describe the current state of our research in captur-
ing, analyzing, and applying expression in performance ges-
ture. To apply machine-learning algorithms to performance
gesture, we needed to develop a vocabulary to clarify the
movement qualities we wished to quantify. For this purpose,
we chose Laban Movement Analysis (LMA)(Laban and Ull-
mann 1966) and used it to inform and guide the creation of
our dataset and our methods of feature extraction. We de-
scribe these features and our use of several machine-learning
algorithms (specifically k-means clustering, Hidden-Markov
Models (HMM), and autoencoders), followed by a discussion
of the results and implications of these approaches. Finally,
we will offer conclusions and future directions we wish to
pursue based on this research.

Classifying Movement through Laban
Movement Analysis

Laban Movement Analysis is a method and language created
by Rudolf Laban (1879-1958) analyzing, describing, and ex-
plaining movement in terms of functionality, tendencies, in-
tention, and expression. The method is principally used by
dancers and choreographers as a way to gain insight into
movement from an expressive and intentional realm, but has
expanded as a descriptive vocabulary for movement itself
(Maletic 1987). We are centrally concerned with the goal that
Laban states:

Basically one has to start with the description of move-
ment . . . . Our aim is thus the mastery of movement
through explanation. (Laban and Ullmann 1966)

The ‘mastery of movement through explanation is executed
in our work by utilizing LMA as a framework from which
we can build a classifiable dataset of labels that encompasses
our movement capabilities. From this data set, we can per-
form digital analysis using machine-learning techniques. Us-
ing concepts from LMA, we develop a structure to represent



movement, intention, and expression.
LMA has five principal components that collectively cre-

ate a comprehensive symbolism for movement: Body, Space,
Effort, Shape, and Relationship. In our work, we focus on Ef-
fort, which relates most directly to expressive characteristics
we are seeking.

There are four distinct components of Effort: Space,
Weight, Time, and Flow. In our work, we focus on the first
three components, omitting Flow, which tends to be based on
the interconnection of other movement qualities. Each La-
ban Effort Component represents a continuum between an
indulging and a fighting Basic Effort Factor (BEF). Space
can be represented on an axis from direct (fighting: focused,
channeled) to indirect (indulging: multi-focused, all around
awareness). Weight can be represented on an axis from strong
(fighting: forceful, firm) or light (indulging: fine touch, buoy-
ant). Time can be represented on an axis from sudden (fight-
ing: urgent, instantaneous) or sustained (indulging: lingering,
gradual).

Through the combinations of these limits, eight Basic Ef-
fort Actions (BEA) can be created: Float (sustained, indirect,
light), Flick (sudden, indirect, light), Wring (sustained, in-
direct, strong), Slash (sudden, indirect, strong), Glide (sus-
tained, direct, light), Dab (sudden, direct, light), Punch (sud-
den, direct, strong), and Press (sustained, direct, strong)
(Hackney 2003)(Laban and Lawrence 1947). These BEAs
are the vocabulary upon which our model is built and estab-
lish a framework from which we can build a quantifiable, la-
beled dataset of expressive movement.

Data Capture System and Feature Extraction
In order to analyze BEAs, we turned to digital movement
analysis. For our corpus, we asked 8 performers (6 non-
experts and 2 with LMA training) to perform each of BEAs in
isolation and used the Microsoft Kinect to capture the gesture
data. From the captured data, we derived a skeleton using the
x, y, and z position of 21 distinct joints of the performer, of
which we focused on the right wrist.

The positional data was transformed into higher-level fea-
tures such as velocity and acceleration. We also extracted
comparative features to measure movement curvature, such
as the dot product between successive positional or succes-
sive velocity vectors. Additionally, we applied Fourier trans-
form to each of these features. All of these features were used
singularly or in combination to create different views of the
dataset through the features. These computations allowed us
to view performance gestures as a series of feature segments,
giving us a means to explore the expressiveness of each per-
formance gesture.

In addition to using these features in their raw form, we
turned to dimensionality reduction using Principle Compo-
nent Analysis (PCA) (Wold, Esbensen, and Geladi 1987) and
Independent Component Analysis (ICA) (Hyvärinen and Oja
2000) in tandem to isolate the features that contained the most
representative aspects of the gesture. We also used unsuper-
vised learning, specifically autoencoding (Ng 2011), to find
machine-derived feature combinations that could optimally
represent our dataset.

Recognition of Gestures
We applied a variety of machine learning algorithms to our
extracted features in an attempt to best classify and recog-
nize performance gestures. We experimented with k-means
clustering, hidden Markov Models, and using autoencoding
features with logistic regression models and support vector
machines . Within each of these models, we attempted clas-
sification at varying time windows and with varying feature
sets

K-Means Clustering
The k-means clustering algorithm allows us to categorize data
with similar characteristics into discrete clusters. After gen-
erating a number of cluster centroids using the algorithm, we
are able to characterize the data by its nearest centroid (Arthur
and Vassilvitskii 2007). For a given BEF, a normalized mo-
tion profile histogram is created by tallying the nearest cen-
troids of all the training BEFs data points, creating an average
histogram over the number of samples. These motion profiles
are then compared to input data histograms and classified as
whichever BEF motion profile it is closest.

Through empirical evaluation, we found the best classifi-
cation generating 32 distinct clusters using the combination
of the velocity and normalized dot product of changes in po-
sitional data.

Weight Space Time

Indulging 0.60 0.80 0.83

Fighting 0.72 0.45 0.55

Table 1: F1 scores of BEF classification with K-means clus-
tering with 32 clusters using 8 frame feature windows of ve-
locity and normalized dot product data

Figure 1: Motion profile histograms generated from k-means
algorithm and velocity data

While using k-means clustering did not produce the highest
F1 scores, it was an important step towards real-time move-
ment analysis and provided direction for using more sophis-
ticated algorithms.



Hidden Markov Models
Hidden Markov Models (HMM) have been widely used in
modeling sequential data such as movement, and particularly,
speech (Rabiner 1989). The model assumes that a hidden pro-
cess with a finite number of states controls the observed data
and assumes that the probability of being in a state at each
time only depends on the state of the model at the previous
time. Using these stipulations, the algorithm models a latent
distribution of the data in each state of the model. Given a
trained HMM, we can identify the likelihood of observing
the input data within that model.

Like the template-matching model used with the k-means
clustering, Laban Effort Component classifiers were made
with two HMMs, each modeling the indulging or fighting
BEF of the Laban Effort Component. We compared the like-
lihood of the input gesture to both HMMs and chose the
model that resulted in the higher likelihood. Through empir-
ical evaluation, we determined that using a moving average
filter (Smith and others 1997) with 12 frames width on ve-
locity resulted in the most representative feature of the data.
We sliced the sequences into non-overlapping segments of 16
frames and trained HMMs with 8 hidden states. In order to
predict the BEF of each frame of the test data, we sliced them
into segments of 16 frames with 15 frames overlap.

Weight Space Time

Indulging 0.71 0.81 0.87

Fighting 0.70 0.79 0.67

Table 2: F1 scores of BEF classification with HMM using 15
frame feature windows of velocity data

When testing HMM classification with different features,
we noticed that the Fourier transform of features performed
worse than non-transformed features. We decided to investi-
gate how the Kinect was smoothing or filtering out informa-
tion from our gestures.

To test this, we performed a hand movement moving pe-
riodically up and down at a rate of one beat per second (1
Hz) and gradually increased the rate to our maximum capa-
bility. We simultaneously recorded the movement with the
Kinect and the accelerometer within a Nintendo Wiimote and
compared the two. The Wiimote’s accelerometer recorded the
increased frequency throughout the recording. However, the
Kinect stopped showing the increased frequency around 6 Hz
and began to filter out a majority of the information (see Fig-
ure 2), potentially removing several important features of our
data. The smoothing of the joint data can be altered within
the Kinect Software Development Kit (Jana 2012) and will
have to be further investigated if we wish to use FFT analysis
to its fullest capabilities.

Autoencoder Features
In addition to utilizing algorithms for classifying, we were
also able to obtain a machine-based representation of the
data through unsupervised learning, specifically autoencoder

Figure 2: Comparing the Fourier spectrogram of kinect and
Wiimote accelerometer as we increase the frequency of hand
movement

SVM SVM w/AE LR LR w/AE

Sudden 0.78 0.81 0.49 0.57

Sustained 0.72 0.71 0.61 0.75

Strong 0.51 0.57 0.54 0.58

Light 0.68 0.69 0.46 0.55

Direct 0.52 0.56 0.52 0.60

Indirect 0.67 0.67 0.49 0.51

Table 3: F1 scores of BEF classification with support vector
machine (SVM) and logistic regression (LR) classifiers us-
ing 16 frame feature windows of velocity data and activations
from autoencoder (w/AE)

activations. Similar to principal component analysis, au-
toencoders generalize datasets to a representative collec-
tion of features, allowing us to reduce dimensionality and
present a non-linear representation of our dataset (Hinton and
Salakhutdinov 2006) (Ng 2011).

Using windows of 16 frames on velocity data as source
data, we generalized our movement using 48 activation states.
Using these activation states, we created training and testing
feature sets from our LMA recordings. These feature sets
were then fed to logistic regression and support vector ma-
chine classifiers. (see Table 3).

Discussion of Results
While the overall accuracy of our tests did show some level
distinction between LMA gestures, the levels were not as high
as we anticipated. This could be due to several reasons.

The windowed segments of the data could be less distinc-



tive than the labels imply. In preliminary tests, classification
was attempted on the entirety of gestures rather than win-
dowed segments. This resulted in much higher accuracies,
but was not done in real-time, our ideal system setting. This
suggests that there are distinctive elements within the ges-
tures, but our windowing was unable to isolate those elements
from the rest of the data. Steps must be taken to consider the
balance between considering the whole gesture versus a real-
time computing system. Using infinite impulse response fil-
ters or segmenting by specific points of interest in the gesture
may provide a more ideal compromise between optimizing
our data usage and working in real-time.

The features from a singular joint may not contain enough
information to provide clear distinction between gestures. In
our tests, we used only a fraction of the total features and
only derived those from the right wrist. Testing with more
features from additional joints in combination could lead to
higher classification scores.

Autoencoding activations were used in replacement of ve-
locity features for our tests. Alternatively, these activations
could be concatenated with the original features, creating
combinatorial feature representation of both sets, potentially
improving accuracy.

Conclusions and Future Work
Our research in recognizing nuanced expression in gestures
is beginning to show promising results and has directed our
plans for future investigation. The combinatorial nature of
feature representation still needs to be further explored in or-
der to find the best representation of the data. A more gen-
eralized movement vocabulary that is simpler and more basic
than LMA could allow for a more fundamental approach to
movement, reducing intentional context. Locating and focus-
ing on the most essential data segments rather than all seg-
ments could direct our research to the most representative
gesture elements. While autoencoding has generated better
feature representations of our data, that representation has
only been used with select algorithms and should be used
with others including HMMs or deep-belief networks. Kinect
filtering will lead us into exploring the internal configuration
of the latest release of Microsofts sensor in hope of manipu-
lating the filtering that affects Fourier transforms of the data.

While there is still much work to be done, we have found
promise in our current research. Through understanding the
basic building blocks of performance gesture through ma-
chine learning, we can begin to more effectively understand
and generalize that gesture. Through this understanding, we
can start taking full advantage of our full physical capacities
in human-computer interactions.

A deeper understanding of the expressiveness within per-
formance gesture could lead to more efficient, liberated, and
expressive human-computer interactions, which would fos-
ter user-driven innovation, providing more refined and ro-
bust methods of information control and exploration. This
expansion of expression could redefine the very fundamen-
tals of movement performance practice, disrupting the cur-
rent paradigm and forcing a new approach to technology and
movement aesthetics. Using digital feature capture, data anal-
ysis, and machine-learning algorithms, we seek definable ex-

pression and intention in performance gesture to realize this
paradigm disruption.
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